A counterexample to generalizations of the Milnor - Bloch - Kato

نویسنده

  • Takao Yamazaki
چکیده

We construct an example of a torus T over a field K for which the Galois symbol K(K;T, T )/nK(K; T, T ) → H(K,T [n] ⊗ T [n]) is not injective for some n. Here K(K; T, T ) is the Milnor K-group attached to T introduced by Somekawa. We show also that the motive M(T×T ) gives a counterexample to another generalization of the Milnor-BlochKato conjecture (proposed by Beilinson).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

S ep 2 00 7 A counterexample to generalizations of the Milnor - Bloch - Kato conjecture ∗

We construct an example of a torus T over a field K for which the Galois symbol K(K;T, T )/nK(K;T, T ) → H(K,T [n] ⊗ T [n]) is not injective for some n. Here K(K;T, T ) is the Milnor K-group attached to T introduced by Somekawa. We show also that the motiveM(T×T ) gives a counterexample to another generalization of the Milnor-BlochKato conjecture (proposed by Beilinson).

متن کامل

Milnor K-groups and Function Fields of Hypersurfaces in Positive Characteristic

Let X be an integral affine or projective hypersurface over a field F of characteristic p > 0, and let F (X) denote its function field. In a recent article, Dolphin and Hoffmann obtained an explicit description of the kernel of the natural restriction homomorphism between the rings of absolute Kähler differentials of F and F (X), respectively. In this note, we examine the possibility of derivin...

متن کامل

An Overview of Motivic Cohomology

In this talk we give an overview of some of the motivations behind and applications of motivic cohomology.We first present aK-theoretic timeline converging onmotivic cohomology, then briefly discuss algebraic K-theory and its more concrete cousin Milnor K-theory. We then present a geometric definition of motivic cohomology via Bloch’s higher Chow groups and outline the main features of motivic ...

متن کامل

Milnor ' S K - Groupsfor Complete Regular Local Ringsyoshihiro

In this paper, we investigate the relationship between Milnor's K-group and Galois cohomology for the quotient eld of a 2-dimensional complete regular local ring with a nite residue eld. The results given in this paper are considered as a partial answer to the Bloch-Kato conjecture for such a eld.

متن کامل

2 7 Ja n 20 06 HILBERT 90 FOR GALOIS COHOMOLOGY

Assuming the Bloch-Kato Conjecture, we determine precise conditions under which Hilbert 90 is valid for Milnor k-theory and Galois cohomology. In particular, Hilbert 90 holds for degree n when the cohomological dimension of the Galois group of the maximal p-extension of F is at most n.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007